On the Nesterov-Todd Direction in Semidefinite Programming
نویسندگان
چکیده
We study different choices of search direction for primal-dual interior-point methods for semidefinite programming problems. One particular choice we consider comes from a specialization of a class of algorithms developed by Nesterov and Todd for certain convex programming problems. We discuss how the search directions for the Nesterov-Todd (NT) method can be computed efficiently and demonstrate how they can be viewed as Newton directions. This last observation also leads to convenient computation of accelerated steps, using the Mehrotra predictor-corrector approach, in the NT framework. We also provide an analytical and numerical comparison of several methods using different search directions, and suggest that the method using the NT direction is more robust than alternative methods.
منابع مشابه
A path-following infeasible interior-point algorithm for semidefinite programming
We present a new algorithm obtained by changing the search directions in the algorithm given in [8]. This algorithm is based on a new technique for finding the search direction and the strategy of the central path. At each iteration, we use only the full Nesterov-Todd (NT)step. Moreover, we obtain the currently best known iteration bound for the infeasible interior-point algorithms with full NT...
متن کاملA full Nesterov-Todd step interior-point method for circular cone optimization
In this paper, we present a full Newton step feasible interior-pointmethod for circular cone optimization by using Euclidean Jordanalgebra. The search direction is based on the Nesterov-Todd scalingscheme, and only full-Newton step is used at each iteration.Furthermore, we derive the iteration bound that coincides with thecurrently best known iteration bound for small-update methods.
متن کاملA unified analysis for a class of long-step primal-dual path-following interior-point algorithms for semidefinite programming
We present a unified analysis for a class of long-step primal-dual path-following algorithms for semidefinite programming whose search directions are obtained through linearization of the symmetrized equation of the central path Hp(XS) -[PXSP -~ + (PXSP 1)TI/2 = #I, introduced by Zhang. At an iterate (X, S), we choose a scaling matrix P from the class of nonsingular matrices P such that PXSP -~...
متن کاملAn Infeasible Interior-Point Algorithm with Full Nesterov-Todd Step for Semidefinite Programming
This paper proposes an infeasible interior-point algorithm with full Nesterov-Todd step for semidefinite programming, which is an extension of the work of Roos (SIAM J. Optim., 16(4):1110– 1136, 2006). The polynomial bound coincides with that of infeasible interior-point methods for linear programming, namely, O(n log n/ε).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Journal on Optimization
دوره 8 شماره
صفحات -
تاریخ انتشار 1998